

DEPARTMENT OF HEALTH AND HUMAN SERVICES
ENTERPRISE PERFORMANCE LIFE CYCLE FRAMEWORK

PPPRRRAAACCCTTTIIICCCEEESSS GGGUUUIIIDDDEEE

<OIDV Logo>

DESIGN
Issue Date: <mm/dd/yyyy>

Revision Date: <mm/dd/yyyy>

<OPDIV> Design (v1.0) Page 1 of 6
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

Document Purpose
This Practices Guides is a brief document that provides an overview describing the best practices,
activities, attributes, and related templates, tools, information, and key terminology of industry-leading
project management practices and their accompanying project management templates.

Background
The Department of Health and Human Services (HHS) Enterprise Performance Life Cycle (EPLC) is a
framework to enhance Information Technology (IT) governance through rigorous application of sound
investment and project management principles, and industry best practices. The EPLC provides the
context for the governance process and describes interdependencies between its project management,
investment management, and capital planning components. The EPLC framework establishes an
environment in which HHS IT investments and projects consistently achieve successful outcomes that
align with Department and Operating Division goals and objectives.

The Design Document describes the technical solution that satisfies the requirements for the Business
Product (e.g., system). Either directly or by reference to other documents, the Design Document provides
a high-level overview of the entire solution architecture and data design, including external interfaces, as
well as lower-level detailed design specifications for internal components of the Business Product that are
to be developed.

Practice Overview
Developing systems is usually a complex and challenging endeavor. In general, it is infeasible for a single
individual to design and develop a successful system of any complexity without effectively cooperating
with many other people. Therefore, it is necessary to apply a disciplined approach to systematically
designing, developing, managing, and controlling the development process with the goal of creating high-
quality systems that meet the requirements of end-users within a specified project budget and schedule.

According to the Institute of Electrical and Electronics Engineers (IEEE), design is both “the process of
defining the architecture, components, interfaces, and other characteristics of a system or component”
and “the result of [that] process”. Prelude to system design is analysis which is mainly involved in
documenting requirements in a form that can support design and development of the proposed system.
This includes business processes as well as the system functionality supporting those processes.

All systems must demonstrate traceability to the Federal Enterprise Architecture (FEA). The FEA is an
initiative led by OMB to identify opportunities to simplify processes and unify work across agencies. The
FEA is designed using a collection of interrelated “reference models” to facilitate cross-agency analysis
and the identification of duplicative investments, gaps, and opportunities. For additional information,
please refer to http://www.whitehouse.gov/omb/e-gov/fea/. Its foundation is the Business Reference
Model, which is made up of the following five reference models:

 Performance Reference Model - is a standardized framework to measure the performance of major

IT investments and their contributions to program performance. This model helps produce
enhanced performance information to improve strategic and daily decision-making; improves the
alignment and better articulates the contribution of inputs to outputs and outcomes; and identifies

http://www.whitehouse.gov/omb/e-gov/fea/

HHS EPLC Practice Guide - <OPDIV> Design (v1.0) <MM/DD/YYYY>

<OPDIV> Design (v1.0) Page 2 of 6
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

performance improvement opportunities that span traditional organizational structures and
boundaries.

 Business Reference Model - is a function driven framework that describes the Lines of Business
and Internal Functions performed by the Federal Government independent of the agencies that
perform them. All IT investments (including non-major) are mapped to the BRM to identify
collaboration opportunities.

 Service Component Reference Model - provides a common framework and vocabulary for
characterizing the IT and business components that collectively comprise an IT investment. The
SRM will help agencies rapidly assemble IT solutions through the sharing and reuse of business
and IT components. A component is a self contained process, service, or IT capability with
predetermined functionality that may be exposed through a business or technology interface.

 Data Reference Model - describes, at an aggregate level, the data, and information that supports
government program and business line operations. This model enables agencies to describe the
types of interaction and exchanges that occur between the Federal Government and citizens.

 Technical Reference Model - provides a framework to describe the standards, specifications, and
technologies supporting the delivery, exchange, and construction of business (or service)
components and eGov solutions. The Federal TRM unifies existing Department TRMs and
electronic Government guidance by providing a foundation to advance the reuse of technology and
component services from a government wide perspective.

Design Approach
Design activities link requirements analysis to implementation of those requirements. There are a number
of recognized strategies to assist with the process of system design. However, functional decomposition
and object-oriented design approaches are the most commonly recognized. Regardless of which
approach is used it should describe the architecture of the system, how it is decomposed, organized, and
any interfaces between components.

 Function-oriented Design - Decomposes requirements using a top-down approach, first identifying
major system functions, then elaborating and refining them to a level appropriate for design

 Object-oriented Design - Component-based design methodology that decomposes major system
functions into objects rather than procedures

 Data-structure Centered Design - Designs a system starting from the data it manipulates rather
than from the function it performs. The structures of the input and output data is first identified and
then the control structure of the system is developed based on that data

 Integrated Definition (IDEF) - A modeling techniques designed to capture the processes and
structure of information in an organization through the use of sixteen methods each designed to
capture a particular type of information through modeling processes

System design approaches may vary from organization to organization. However, regardless of which
design approach is used, a best practice approach to design is comprised of activities resulting in
analysis of requirements to produce a description of the structure, organization, and operability of the
system being developed. Design efforts decompose and describe system components to a level that
allows for their construction. Any successful design approach must have documented guidelines
designed to support at least three basic components:

 Identification of classes and objects

 Description and diagramming of relationships between classes and objects (logical blueprints)

 Definition and diagramming of object behaviors by describing functionality of each class

Identification of objects includes data and the procedures necessary to operate on that data. Classes
consist of collections, sets, groups, or configurations containing items regarded as having common
attributes or traits. Once defined, relationships can be represented in a set of associated models and or
flow diagrams. Sometimes referred to as Logical Blueprints or Patterns these models are used to further
refine the representation of the system architecture.

A Logical Blueprint identifies the logical node on which each system function resides and diagrams the
interfaces between those nodes. This modeling activity should include discovering potential problem
areas as well as mechanisms for generating desired system behaviors. Identifying key objects and their
responsibilities in different system scenarios is critical to building a successful system. Designers and
developers also need to consider how to organize classes and objects. Design documents define this and
how to manage any associated complexities and help ensure that system components work together to
produce desired results.

HHS EPLC Practice Guide - <OPDIV> Design (v1.0) <MM/DD/YYYY>

<OPDIV> Design (v1.0) Page 3 of 6
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

Regardless of the method used, system design consists of at least three main activities that fit between
the requirements phase and development/testing phase of a project’s life cycle. These three activities will
be defined further into six phases later in this document.

 Architectural Design - Describes the top-level structure and organization of the system and how the
system is decomposed and organized into its various components. It defines the internal structure
of a system, the way it is constructed, its subsystems, components, and the relationships between
them

o System Architecture - Is concerned with how the application interacts with other applications,
not necessarily how the application itself works but, that the appropriate data is passed
between applications correctly.

o Application Architecture - Is concerned with how the individual components of the system
work together, security, best designs interfaces, etc

 System Design - Produces a blueprint of the system to be developed by describing specific
behaviors of each system component sufficiently to allow for their development

 Documenting Design - Design documents that record how design elements will be decomposed,
organized, and packaged.

Architecture Design
This section outlines the system and hardware architecture design of the system that is being built.
Architecture design describes the top-level structure and organization of the system and how the system
is decomposed and organized into its various components. It defines the internal structure of the system,
the way it is constructed, its subsystems, components and relationships between them, system
architecture, and how the application interacts with other applications. A well documented architecture
design may include items such as:

 Logical View - A logical view (flow chart) describes the architecturally significant components of the
system design such as sub-systems, packages, hierarchies and layers.

 Hardware Architecture - Hardware architecture is a description and logical view of the hardware,
processes, disciplines, and the rules and relationships among those elements necessary to
effectively implement the system being developed. Moreover, a good architecture provides for an
easy mapping to user requirements. A robust hardware architecture exhibits an optimal degree of
fault-tolerance, backward compatibility, forward compatibility, extensibility, reliability,
maintainability, availability, serviceability, usability, and other such things as necessary and/or
desirable.

 Software Architecture - Software architecture is a description and logical view of the software,
processes, disciplines, and the rules and relationships among those elements necessary to
effectively build the system being developed. Moreover, a good architecture provides for an easy
mapping to user requirements.

 Security Architecture - Security architecture is a description and logical view of the system security,
processes, disciplines, and the rules and relationships among those elements necessary to
effectively secure the system being developed. Moreover, a good architecture provides for an easy
mapping to user requirements and should describe all of the technical requirements that affect
security such as security audits, cryptography, user data, system identification/authentication,
resource utilization, etc.

 Communication Architecture - Communication architecture is a description and logical view of the
system communication, processes, disciplines, and the rules and relationships among those
elements necessary to effectively communicate among elements of the system being developed.
Moreover, a good architecture provides for an easy mapping to user requirements and should
describe all of the technical requirements that affect interfaces such as protocol management,
scheduling, directory services, broadcasts, message types, error and buffer management, security,
etc.

 Performance - Describes performance requirements and any related processes including a detailed
description of specific performance requirements and how they are associated with specific project
functionality/deliverables. This may include information such as cycle time, speed per transaction,
test requirements, minimum bug counts, speed, reliability, utilization etc.

System Design
This section outlines the specific behaviors of each system component, module, interface, etc to a level
that allows for their development. A well documented system design may include references to items
such as:

HHS EPLC Practice Guide - <OPDIV> Design (v1.0) <MM/DD/YYYY>

<OPDIV> Design (v1.0) Page 4 of 6
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

 Product Requirements – Reference the high level features or capabilities that the business team
has committed to delivering to a customer. Product requirements do not specify how the features or
the capabilities will be designed.
o Functional Requirements address what the system does. They define any requirement that

outlines a specific way a product function or component must perform.
o Non-Functional Requirements (also referred to as Quality of Service by the International

Institute of Business Analysts, Business Analysis Body of Knowledge) address items such as
the technical solutions, topics that address the number of people who need to use the product,
where the product will be located, the types of transactions processed, and types of technology
interactions.

 Database Design - Define rules and recommendations to be used as guidelines when designing
the system’s database. Guidelines should be documented for items such as mapping classes to
database structures, handling design inheritances, naming conventions, structure (tables, data
fields, dependencies, reports, extracts, etc).

 Data Conversion - Data conversion is the conversion of one form of data to another usually for the
purpose of application interoperability or capability.

 Application Program Interface - An application programming interface (API) is a source code
interface to support requests for services made by the computer program. An API specifies details
of how two independent computer programs interact.

 User Interface Design - User interface design focuses on the user's experience and interaction with
the system. The goal of user interface design is to make the user's interaction with the system as
simple and intuitive as possible. The design of the user interface is usually performed in
conjunction with prototyping and may include components such as workflows, wireframes,
prototypes, etc.

 Performance - Describes performance requirements and any related processes including a detailed
description of specific performance requirements and how they are associated with specific project
functionality/deliverables. This may include information such as cycle time, speed per transaction,
test requirements, minimum bug counts, speed, reliability, utilization, end-user requirements, etc.

Documenting Design
This section outlines how design elements will be decomposed, organized, and packaged. This would
document items included in architectural and system design within a Design Specification document. The
Design Specification document is the main design document for the system and describes how major
aspects of design will be managed. Either directly or by reference to other documents, the Design
Specification document should address the following:

 Architecture Design
o Logical View
o Hardware Architecture
o Software Architecture
o Security Architecture
o Communication Architecture
o Performance

 System Design
o Requirements
o Database Design
o Data Conversion
o Application Program Interfaces
o User Interface Design
o System Performance
o Section 508 Compliance

Business Analysts, Architects, and Designers are the primary individuals involved in the design process.
Business Analysts translate the business requirements into technical requirements for the Architects and
Designers. Architect lead and coordinate technical activities such as translating requirements into
architecture and system design. Designers are responsible for seeing that individual classes, packages,
and sub-systems meet the requirements of the underlying implementation technology. The types of
artifacts created by these individuals may include:

 Interface definition and/or design models

 System and architecture definition and/or design models

 Workflows

HHS EPLC Practice Guide - <OPDIV> Design (v1.0) <MM/DD/YYYY>

<OPDIV> Design (v1.0) Page 5 of 6
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

 Updated business requirements

One design technique that can be used is an iterative process that begins by defining a high-level design
and then decomposing that design into more detailed components that complement the implementation
requirements of the system. Another technique is Joint Application Design (JAD). This technique brings
developers and end-users together to gather requirements as well as design and develop the business
product. Designers should follow the design technique that is standard practice at their OPDIV.

Design activities should continue until the system to be developed is defined to a point detailed enough to
allow the project team to successfully build the system to meet the project requirements. The actual life
cycle of design activities will vary depending on the experience of the project team, the development
environment, the complexity of the system being developed, and the detail to which the system
requirements have been specified. However, because new systems affect users, and often change the
environment that they work in, final system requirements and design may not be fully completed until later
in the project’s life cycle. As a result, the design process must provide a stable basis for what is often an
ongoing, iterative, process.

Design documents record the necessary information required to effectively define system design and
architecture to a level that can appropriately guide developers in building the system. These documents
provide a level of visibility and verification of the design used and may also include a breakdown of topics
related to quality and measurements and how such measures are defined and will be used. A variety of
design techniques exist to help ensure the quality of a system design. Some of which include:

 Analysis and reviews

 Simulations and prototypes

 Metrics and measures

Design documents are incrementally and iteratively produced during the system development life cycle,
based on the particular circumstances of the IT project and the system development methodology used
for developing the system. These documents are initially created during the Planning Phase of the
project and updated as necessary throughout the design process. The preliminary versions of these
documents are reviewed during the EPLC Stage Gate Preliminary Design Review; the final versions are
input to the EPLC project Detailed Design Review. Their intended audience is the project manager,
project team, and development team. Some portions of the design documents, such as graphical user
interface (GUI) design, may be shared with the client/user and other stakeholder whose input/approval
into the GUI is required.

Design activities can be divided into roughly six phases which may include:

 Requirements Analysis - Determines the user requirements. This happens prior to the actual
design. Collects and analyses user requirements through activities such as focus group, user trials,
interviews, observations, etc. This phase defines for the project team an understanding of the
intended system functionality, any user concerns and any assumptions/constraints

 Conceptual Design - Models the underlying business. Typically, the conceptual design is divided
into three models:

o Data - Identifies and defines data entities and defines any relationships between them
o Business Functions - Identifies and defines component business functions
o Communications - Maps interactions between business functions and data

 Logical Design - Initiates the process of showing the interrelationships of the solution’s components

 Physical Design - Examines how to physically implement the logical design

 Construction - Converts the logical design into actual system code

 Evaluation - Validates the effectiveness of the system that was developed. This is usually
accomplished via testing, observation, and user feedback

In most cases, the project team will also need to document strategies for dealing with items such as:

 Specifying the mapping from design to implementation at both the package and class levels

 Documenting and representing reusable components, component systems, libraries, commercial
off-the-shelf (COTS) products, etc

 Documenting transaction management and how it will be accomplished including the interaction of
transaction management, fault management, and system recovery

HHS EPLC Practice Guide - <OPDIV> Design (v1.0) <MM/DD/YYYY>

<OPDIV> Design (v1.0) Page 6 of 6
This document is 508 Compliant [Insert additional appropriate disclaimer(s)]

 Documenting standards for programming structure and algorithm guidelines, hardware and
software interfaces, operations, messages, detecting, handling, and reporting faults, etc.

Practice Best Practices
 Iterative Process - Design is often an iterative process involving repetitive interaction with system

users to refine design to a point adequate to build a system that satisfies requirements.

 Clearly Documented - Design details should be clearly documented in the form of system design
documents that may include items such as interface definitions, workflow, models, use cases, etc.
Design documentation should not only include individual component designs but should also
document any other system-wide concerns

 Review and Approve - Review the design and design documents for precision, completeness, and
usability. Design should be reviewed and approved by all appropriate stakeholders

 Traceability - System design should be directly traceable to satisfying requirements defined during
system analysis

 Reviews - Regular reviews of design documents and design efforts, and their traceability is a good
project management practice

 Interfaces - Systems and devices have varying interfaces. Understand any required system
interfaces prior to detailed design. This may include hardware, software, network, devices, etc

 Think Small - Often systems are forced to work within the confines of devices that may have small
screens, small processors, small memory, etc. Design the system accordingly

 Simple - Keep the user interface and system navigation simple and consistent

 Security - Be aware of system security requirements and how they may affect design

 Tradeoffs - In most instances there are a number of ways to accomplish the same action. Be
aware of the tradeoffs of selecting one approach as opposed to another and how the affects of that
decision may propagate throughout the system

 Balance - Balance the goals of the system or requirements against future costs and benefits.

 Document - Document rationale behind design decisions and tradeoffs

 K.I.S.S. - The key purpose of design is to build a system simple and easy for users to maintain and
operate, not necessarily to experiment with the latest high-tech fad. Focus on the needs of the user
and keep the system simple

 Assumptions/Constraints - Record and address all assumptions, constraints, issues, etc

 Strategy - In some cases it may be necessary to define a unique design strategy for a specific
software development project or functionality

 Design Usability - The system design must be accessible to and understandable by all users.
Include applicable 508 compliance standards.

Practice Activities
 Guidelines - Define and document design process guidelines such as recording of assumptions,

constraints, issues, etc; use of prototyping, experimentation, etc; design approach, logical blue
prints/patterns, documentation, templates, and notation

 Business Process Specification - Define the intended future state of business processes

 Functional Specification - Define the functional part(s) of the system being developed, external
relationships, interaction with the user and other system elements

 Logical Specification - Define the internal logic of the system explaining how it operates

 Conceptual Design - Models the underlying business.

 Logical Design - Initiates the process of prototyping the user interface

 Physical Design - Examines how to physically implement the logical design

 Construction - Converts the logical design into actual system code

 Evaluation - Validates the effectiveness of the system that was developed. This is usually
accomplished via testing, observation, and user feedback

 Verification - Verify each step within the design process to ensure traceability to requirements that
delivers the expected system functionality

